
Page 1 of 4

Avoiding Unsafe Software
My Preferred Options and Suggestions

to Implement CISA Recommendations

Santosh Pandit

London, 9 Nov 2024

Page 2 of 4

Context:
CISA’s recent recommendations have started a ferocious debate. They advise
shifting from memory-unsafe languages (like C++) to memory-safe ones. In my view,
this recommendation makes sense, as relying on developers to follow secure
memory practices perfectly is unrealistic.

My Approach:
Between now and 2035, we will see a significant re-write of software code and
underlying libraries. Table A below outlines CISA’s recommendations alongside my
approach as a technology architect of my own laboratory.

I do not expect you to agree with me; however, I do expect you to be aware of the
risks posed by insecure software to your business and to plan accordingly to ensure
a secure technology architecture.

DMs are always open and welcome! 놴놲놵놶놷놳

Santosh

Page 3 of 4

Table A: Some ideas for implementing CISA recommendations

Use CISA Topic Options (and examples / suggestions)
(Do your own research for suitability)

 Memory unsafe
languages

 Rust (For systems programming, apps and security)

 Go (For network applications, microservices)

 Swift (For Apple platforms)

 Spark (For critical systems)

 Other options: Kotlin, Zig

 SQL injection

 Parameterised queries (Rust crate rusqlite)

 SQL escaping (sqlx)

 Validate and sanitise input (server side please!)

 Prepared statements (most important!!!)

 Command
injection

 Parameterised APIs (Rust crate rusqlite)

 Validate and sanitise input (server side please!)

 SELinux / AppArmor / MIC

 Escaping (combine with other cautions)

 Direct shell access

 Default
passwords

 Mandatory Password Change on First Login

 Default usernames


Patch known
vulnerabilities
before release

 Identify assets (including underlying libraries)

 Vulnerabilities scanners (debcvescan)

 Patch management tools

 Automatic updates (test first before prod!)

Page 4 of 4

Use CISA Topic Options (and examples / suggestions)
(Do your own research for suitability)



Secure open-
source
dependencies
(SBOM)

 Secure trusted resources (repositories)

 Dependency management / audit (Snyk, OWASP)

 Pinning Version and Release (careful !)



Implement multi-
factor
authentication
(MFA)

 Default: must use (Do not allow exceptions for

applications relating to financial, healthcare,

government, cloud, email, and administrative access)

 Appropriate MFA method (SMS can be risky!)

 Passwordless applications (I do not trust them!)


Enable logging for
intrusion
detection

 Remote immutable logs (all sources, > 6months)

 Timely response

 AI driven automation (Double-test before use!)

 Timely publishing
of CVEs

 Transparent and timely disclosures

 Dependency management / audit (Snyk, OWASP)

 Patch history management



Establish a
vulnerability
disclosure policy
(VDP) –
Here I would go
beyond what
CISA suggests.

 Use security.txt (and security.html)

 Operate a bug bounty scheme (be open!)

 Be very fair and reward (be generous!)

My strong message based on personal experience
of running a private bug bounty for over five years
– Do not be penny-wise and pound-foolish, please.

Disclaimer: All views and opinions are strictly personal. All errors and omissions are solely mine.

Copyright © 2024 Santosh Pandit License: CC BY

