
Page 1 of 4

36 Concepts in Software
Risk Management

Page 2 of 4

Concept Description

Attack Surface
Analysis

Identifying and assessing potential points of entry or
vulnerabilities in a system that an attacker could exploit. Do not
forget the APIs!

Automated
Dependency Updates

Automatically updating software dependencies to maintain
security and ensure compatibility. This is different than simple
updates.

Automated
Enforcement

Using automated systems to block non-compliant software
dependencies. This is different than application whitelisting.

Change Control
Tracking

A systematic process for managing and documenting changes to
a project or system.

Checksum Validation Verifying the integrity of data by comparing a computed
checksum with a pre-existing one. I use SHA-2 family for sub
resource integrity for webserver (due to speed) and SHA-3-512
for critical applications.

Code Signing Using digital signatures to verify the authenticity and integrity of
software code, preventing tampering by unauthorised parties. I
use ECDSA (P-384/P-521) for traditional certificates and at
https://kyber.club you can create ML-DSA digital signatures for
free.

DevSecOps Integrating security practices throughout the entire software
development lifecycle. My personal view is that agile practices
rarely put security first!

Drift Detection Identifying unintended or unauthorised changes in a system's
configuration over time. Note that debsums is not
comprehensive.

Dynamic Application
Security Testing
(DAST)

Testing running applications for vulnerabilities by simulating
external attacks, without access to source code. OWASP testing
is a bare minimum.

End-of-Life
Identification

Determining when a software component or technology will no
longer be supported or receive updates. Some vendors provide
paid Extended Support for a limited period of time. I would rather
upgrade than waste my money.

Fork and Customise
External Code

Creating a copy of external code to modify it for specific needs
while tracking changes. Forking helps customisation and
protects against malicious upstream changes but adds to the
maintenance burden.

Fuzz Testing Automated software testing technique that inputs invalid,
unexpected, or random data to discover vulnerabilities and
crashes.

https://kyber.club/

Page 3 of 4

Concept Description

Hermetic Builds Build processes that are isolated from external networks and rely
only on explicitly defined inputs, ensuring reproducibility.

Input Validation and
Sanitisation

Ensuring user-supplied data is properly checked and cleaned to
prevent injection attacks (e.g., SQL, command, or XSS injection)
and similar input-related vulnerabilities.

Inventory Tracking Maintaining a comprehensive record of all software components
and assets.

License Compliance
Checks

Verifying adherence to the licensing terms of software
components.

Lockfiles with Hashes Files that record the exact versions and cryptographic hashes of
dependencies to ensure reproducible builds and prevent
tampering.

Multi-layer Scanning Performing security scans at different stages of the software
development lifecycle and across various layers of the software
stack.

Namespace
Reservation

Reserving specific names in software registries to prevent
malicious actors from publishing packages with similar names.

Open-source
Software (OSS)
Supply Chain
Security

Securing the process of creating, distributing, and consuming
open-source software.

Patch Management Systematically identifying, acquiring, testing, and applying
updates to software to address vulnerabilities and improve
functionality. Do not forget the low CVEs!!!

Private Vulnerability
Reporting

A mechanism for individuals to report security vulnerabilities
directly to developers before public disclosure.

Provenance Data Information about the origin and history of a software
component, including how it was built and by whom.

Rate Limiting Implementing controls to restrict the number of requests or
resource usage per user/session, mitigating denial-of-service
risks from unrestricted resource consumption in APIs.

Reproducible
Outputs

Ensuring that a build process consistently produces the same
output every time it is run with the same inputs.

SDLC (Software
Development Life
Cycle) Transparency

Ensuring visibility and accountability throughout all stages of
software development.

Secure By Design Incorporating security principles and practices into the initial
design and architecture of software systems.

Page 4 of 4

Concept Description

Shift Left Security Shifting security considerations and practices to earlier stages of
the software development lifecycle (corrected from "Security
Left" for accuracy).

Software Bill of
Materials (SBOM)

A formal, machine-readable inventory of all components,
dependencies, and metadata in a software product.

Software Escrow Safe custody of source code with a third party to be used in case
of rupture of a contract (e.g. bankruptcy of the service provider)

Static Application
Security Testing
(SAST)

Analysing source code or binaries for vulnerabilities without
executing the program.

Third-Party Risk
Management

Assessing and mitigating risks associated with external vendors,
suppliers, and partners in the software ecosystem.

Threat Intelligence Collecting and analysing information about current and emerging
threats to proactively defend against them.

Threat Modelling Systematically identifying, prioritising, and mitigating potential
threats and vulnerabilities in a system.

Vulnerability
Prioritisation

Ranking vulnerabilities based on their severity, exploitability, and
potential impact.

Zero Trust
Architecture

A security model that requires continuous verification of users,
devices, and applications, assuming no inherent trust.

Special note: The idea that using a memory-safe language like Rust automatically

eliminates all weaknesses in C is misleading. While Rust’s ownership model and borrow

checker prevent common C vulnerabilities like buffer overflows and dangling pointers, they

do not address logic errors, misuse of unsafe code, or vulnerabilities in C-based

dependencies. Memory safety reduces but does not eliminate all security risks.

All views in this note and all errors/mistakes/omissions are solely mine. It is just my preferred

list.

Santosh Pandit

London 30 July 2025

